Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation on laser quenching heat transfer mechanism using numerical method and improvement of quenching depth

Kitagawa, Yoshihiro; Shirahama, Takuma*; Kisohara, Naoyuki; Tsuboi, Akihiko

Dai-96-Kai Reza Kako Gakkai Koen Rombunshu (Internet), p.91 - 96, 2022/01

Laser scanning quenching is a locally and rapidly heat-treated process and has an advantage of no coolant required. Compared with conventional technique such as induction quenching, the region of laser quenching is about 0.5$$sim$$0.7mm in depth and it needs to be expanded for more applications or durability. For this purpose, the temperature distributions and transitions in materials during laser irradiation have been revealed by using a 3D heat transfer computer code, micro-structural observation and hardness transitions in depth direction. The results indicate the laser irradiation with low power and low scan speed condition allows deeper quenching area, but it also suggests the hardness of the deepest quenching area is degraded due to slow temperature decreasing rate after laser heat scanning. Multiple times continuous irradiation have been proposed and studied to resolve this hardness degradation, and maximum quenching depth of 1.4mm is obtained under three times irradiation and controlling its power and scan speed properly.

1 (Records 1-1 displayed on this page)
  • 1